1.1.2 余弦定理(一)
1.熟记余弦定理及其推论;
2.能够初步运用余弦定理解斜三角形.
1.余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=b2+c2-2bccos_A,b2=c2+a2-2cacos_B,c2=a2+b2-2abcos_C.
2.余弦定理的推论
cos A=;cos B=;cos C=.
3.在△ABC中:
(1)若a2+b2-c2=0,则C=90°;
(2)若c2=a2+b2-ab,则C=60°;
(3)若c2=a2+b2+ab,则C=135°.
一、选择题
1.在△ABC中,已知a=1,b=2,C=60°,则c等于( )
A. B.3
C. D.5
答案 A
2.在△ABC中,a=7,b=4,c=,则△ABC的最小角为( )
A. B.
C. D.
答案 B
解析 ∵a>b>c,∴C为最小角,
由余弦定理cos C=
==.∴C=.
3.在△ABC中,已知a=2,则bcos C+ccos B等于( )
A.1 B. C.2 D.4
答案 C
解析 bcos C+ccos B=b·+c·==a=2.
4.在△ABC中,已知b2=ac且c=
A. B. C. D.
答案 B
解析 ∵b2=ac,c=