高中数学必修四第10课时 平面向量的数量积及运算律(二):doc全文下载
第十课时 平面向量的数量积及运算律(二)
教学目标:
掌握平面向量数量积运算规律,能利用数量积的5个重要性质及数量积运算规律解决有关问题,掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:
平面向量数量积及运算规律.
教学难点:
平面向量数量积的应用.
教学过程:
Ⅰ.复习回顾
上一节,我们一起学习向量数量积的定义,并一起由定义推证了5个重要性质,并得到了三个运算律,首先我们对上述内容作一简要回顾.
这一节,我们通过例题分析使大家进一步熟悉数量积的定义、性质、运算律,并掌握它们的应用.
Ⅱ.讲授新课
[例1]已知:|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
分析:由数量积的定义可知,它的值是两向量的模与它们夹角余弦值的乘积,只要能求出它们的夹角,就可求出a·b.
解:①当a∥b时,若a与b同向,则它们的夹角
若a与b反向,则它们的夹角θ=180°,
∴a·b=|a||b|cos180°=3×6×(-1)=-18;
②当a⊥b时,它们的夹角θ=90°,
∴a·b=0;
③当a与b的夹角是60°时,有
a·b=|a||b|cos60°=3×6×=9
评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能.
[例2]已知a、b都是非零向量,且a+3b与
分析:要求a与b的夹角,只要求出a·b与|a|,|b|即可.
解:由已知(a+3b)⊥(
又(a-4b)⊥(
①-②得:
即有a·b=b2=|b|2,
将它代入①可得: