第三课时 向量的减法
教学目标:
掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量,能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量,了解向量方程,并会用几何法解向量方程.
教学重点:
向量减法的三角形法则.
教学难点:
对向量减法定义的理解.
教学过程:
Ⅰ.复习回顾
上一节,我们一起学习了向量的加法,并熟悉了求解向量和的向量加法的平行四边形法则与三角形法则,并进行了简单应用.
这一节,我们来继续学习向量的减法.
Ⅱ.讲授新课
1.向量减法的定义
向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b).
求两个向量差的运算,叫向量的减法.
说明:(1)与a长度相等、方向相反的向量,叫做a的相反向量;
(2)零向量的相反向量仍是零向量;
(3)任一向量和它相反向量的和是零向量.
[师]从向量减法的定义中,我们可以体会到向量减法与向量加法的内在联系.
2.向量减法的三角形法则
说明:向量减法可以转化为向量加法,如图b与a-b首尾
相接,根据向量加法的三角形法则有b+(a-b)=a
即a-b=.
下面我们通过例题来熟悉向量减法的三角形法则的应用.
分析:根据向量减法的三角形法则,需要选点平移作出两个
同起点的向量.
作法:如图,在平面内任取一点O,作=a,=b,
作,,则=a-b,=c-d
[例2]判断题