第四课时 向量的数乘(一)
教学目标:
掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律,理解两个向量共线的条件,能够运用两向量共线条件判定两向量是否平行.
教学重点:
实数与向量积的定义;实数与向量积的运算律;
教学难点:
对向量共线的理解.
教学过程:
Ⅰ.复习回顾
前面两节课,我们一起学习了向量加减法运算.这一节,我们将在加法运算基础上研究相同向量和的简便计算及其推广.
Ⅱ.讲授新课
在代数运算中,a+a+a=
上述过程推广后即为实数与向量的积.
1.实数与向量的积
实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:
(1)
(2)
根据实数与向量的积的定义,我们可以验证下面的运算律.
2.实数与向量的积的运算律
(1)
(2)
(3)
说明:对于运算律的验证要求学生通过作图来进行.
3.向量b与非零向量a共线的充要条件是有且只有一个实数λ,使b=λa.
说明:(1)推证过程引导学生自学;
(2)可让学生思考把“非零向量”的“非零”去掉后,是否正确,目的是通过0与任意向量的平行来加强学生对于充要条件的认识.
下面我们通过例题分析来进一步熟悉向量与实数积的定义、运算律及两向量共线的充要条件的应用.
[例1]若
分析:此题可把已知条件看作向量m、n的方程,通过方程组的求解获得m、n.
解: