高中数学必修四第8课时 平面向量的坐标运算(二):doc全文下载
第八课时 平面向量的坐标运算(二)
教学目标:
掌握已知平面向量的和、差,实数与向量的积的坐标表示方法并能熟练运用.
教学重点:
平面向量的坐标运算.
教学难点:
平面向量的坐标运算.
教学过程:
Ⅰ.复习回顾
平面向量的坐标运算法则.
Ⅱ.讲授新课
[例1]已知A(-1,-1),B(1,3),C(2,5),那么与是否共线?线段AB与线段AC是否共线?
解:∵=(1-(-1),3-(-1))=(2,4),
=(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,
∴∥,∴与共线.
又直线AB与直线AC显然有公共点A,
∴A、B、C三点共线,即线段AB与线段AC共线.
综上,与共线,线段AB与线段AC也共线.
[例2]已知
对此题,课本是利用向量相等(即=)来求解的,较为简便.另外,此题若利用同学们刚学过且也较为熟悉的向量加法或减法都是可以顺利求解的,为开拓同学们的解题思路,下面就介绍这下面六种解法.
解法一:(利用向量加法)
∵=,∴=+
∴(x,y)=(-2,1)+(3-(-1),4-3)
=(-2,1)+(4,1)=(2,2)
∴顶点D的坐标为(2,2).
解法二:(利用向量减法)