1.若{an}是公差为1的等差数列,则{a2n-1+2a2n}是( )
A.公差为3的等差数列 B.公差为4的等差数列
C.公差为6的等差数列 D.公差为9的等差数列
解析:选C.设数列{an}的公差为d,则由题意知,d=1,
设cn=a2n-1+2a2n,则cn+1=a2n+1+2a2n+2,
cn+1-cn=a2n+1+2a2n+2-a2n-1-2a2n=6d=6.
2.已知数列{an}中,a1=1,an+1=(n∈N*),则a5等于( )
A. B.
C. D.
解析:选A.由an+1=得
==+,
∴-=,
∴{}是以1为首项,以为公差的等差数列.
∴=1+(n-1)·
=,
∴an=.
∴a5==.
3.设y=f(x)是一次函数,若f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)等于( )
A.n(2n+3) B.n(n+4)
C.2n(2n+3) D.2n(n+4)
解析:选A.设y=kx+b(k≠0),∵f(0)=1,∴b=1.
又∵f(1) ,f(4),f(13)成等比数列,
∴(4k+1)2=(k+1)·(13k+1),∴k=2,∴y=2x+1.
∴f(2)+f(4)+…+f(2n)
=(2×2+1)+(2×4+1)+…+(2×2n+1)=2(2+4+…+2n)+n
=2n2+2n+n=n(2n+3).
4.已知数列{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5等于________.